Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.029
Filtrar
1.
Sci Rep ; 14(1): 10561, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719884

RESUMEN

This study focuses on understanding the structural and molecular changes in lipid membranes under the influence of six halogenated flavonoid derivatives differing in the number and position of substitution of chlorine and bromine atoms (D1-D6). Utilizing various analytical techniques, including fluorometric methods, dynamic light scattering (DLS), attenuated Fourier transform infrared spectroscopy (ATR- FTIR), and FT-Raman spectroscopy, the research aims to elucidate the mechanisms underlying the interaction of flavonoids with cell membranes. Additionally, the study includes in silico analyses to explore the physicochemical properties of these compounds and their potential pharmaceutical applications, along with toxicity studies to assess their effects on cancer, normal, and red blood cells. Our study showed the ability of halogenated derivatives to interact mostly with the outer part of the membrane, especially in the lipid heads region however, some of them were able to penetrate deeper into the membrane and affect the fluidity of hydrocarbon chains. The potential to reduce cancer cell viability, the lack of toxicity towards erythrocytes, and the favourable physicochemical and pharmacokinetic properties suggest these halogenated flavonoids potential candidates for exploring their potential for medical use.


Asunto(s)
Flavonoides , Lípidos de la Membrana , Flavonoides/química , Flavonoides/farmacología , Flavonoides/metabolismo , Humanos , Lípidos de la Membrana/metabolismo , Lípidos de la Membrana/química , Membrana Celular/metabolismo , Halogenación , Citotoxinas/química , Citotoxinas/farmacología , Citotoxinas/metabolismo , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Supervivencia Celular/efectos de los fármacos , Espectrometría Raman , Espectroscopía Infrarroja por Transformada de Fourier , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo , Línea Celular Tumoral
2.
mSystems ; 9(4): e0020624, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38514462

RESUMEN

Helicobacter pylori is a highly successful pathogen that poses a substantial threat to human health. However, the dynamic interaction between H. pylori and the human gastric epithelium has not been fully investigated. In this study, using dual RNA sequencing technology, we characterized a cytotoxin-associated gene A (cagA)-modulated bacterial adaption strategy by enhancing the expression of ATP-binding cassette transporter-related genes, metQ and HP_0888, upon coculturing with human gastric epithelial cells. We observed a general repression of electron transport-associated genes by cagA, leading to the activation of oxidative phosphorylation. Temporal profiling of host mRNA signatures revealed the downregulation of multiple splicing regulators due to bacterial infection, resulting in aberrant pre-mRNA splicing of functional genes involved in the cell cycle process in response to H. pylori infection. Moreover, we demonstrated a protective effect of gastric H. pylori colonization against chronic dextran sulfate sodium (DSS)-induced colitis. Mechanistically, we identified a cluster of propionic and butyric acid-producing bacteria, Muribaculaceae, selectively enriched in the colons of H. pylori-pre-colonized mice, which may contribute to the restoration of intestinal barrier function damaged by DSS treatment. Collectively, this study presents the first dual-transcriptome analysis of H. pylori during its dynamic interaction with gastric epithelial cells and provides new insights into strategies through which H. pylori promotes infection and pathogenesis in the human gastric epithelium. IMPORTANCE: Simultaneous profiling of the dynamic interaction between Helicobacter pylori and the human gastric epithelium represents a novel strategy for identifying regulatory responses that drive pathogenesis. This study presents the first dual-transcriptome analysis of H. pylori when cocultured with gastric epithelial cells, revealing a bacterial adaptation strategy and a general repression of electron transportation-associated genes, both of which were modulated by cytotoxin-associated gene A (cagA). Temporal profiling of host mRNA signatures dissected the aberrant pre-mRNA splicing of functional genes involved in the cell cycle process in response to H. pylori infection. We demonstrated a protective effect of gastric H. pylori colonization against chronic DSS-induced colitis through both in vitro and in vivo experiments. These findings significantly enhance our understanding of how H. pylori promotes infection and pathogenesis in the human gastric epithelium and provide evidence to identify targets for antimicrobial therapies.


Asunto(s)
Colitis , Helicobacter pylori , Animales , Humanos , Ratones , Proteínas Bacterianas/genética , Antígenos Bacterianos/genética , Helicobacter pylori/genética , Transcriptoma/genética , Precursores del ARN/metabolismo , Interacciones Huésped-Patógeno/genética , Análisis de Secuencia de ARN , ARN Mensajero/metabolismo , Citotoxinas/metabolismo
3.
J Cell Biochem ; 125(3): e30527, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38332574

RESUMEN

The presence of Helicobacter pylori (H. pylori) infection poses a substantial risk for the development of gastric adenocarcinoma. The primary mechanism through which H. pylori exerts its bacterial virulence is the cytotoxin CagA. This cytotoxin has the potential to induce inter-epithelial mesenchymal transition, proliferation, metastasis, and the acquisition of stem cell-like properties in gastric cancer (GC) cells infected with CagA-positive H. pylori. Cancer stem cells (CSCs) represent a distinct population of cells capable of self-renewal and generating heterogeneous tumor cells. Despite evidence showing that CagA can induce CSCs-like characteristics in GC cells, the precise mechanism through which CagA triggers the development of GC stem cells (GCSCs) remains uncertain. This study reveals that CagA-positive GC cells infected with H. pylori exhibit CSCs-like properties, such as heightened expression of CD44, a specific surface marker for CSCs, and increased ability to form tumor spheroids. Furthermore, we have observed that H. pylori activates the PI3K/Akt signaling pathway in a CagA-dependent manner, and our findings suggest that this activation is associated with the CSCs-like characteristics induced by H. pylori. The cytotoxin CagA, which is released during H. pylori infection, triggers the activation of the PI3K/Akt signaling pathway in a CagA-dependent manner. Additionally, CagA inhibits the transcription of FOXO3a and relocates it from the nucleus to the cytoplasm by activating the PI3K/Akt pathway. Furthermore, the regulatory function of the Akt/FOXO3a axis in the transformation of GC cells into a stemness state was successfully demonstrated.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Citotoxinas/metabolismo , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/patología , Células Madre Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo
4.
Cancer Med ; 12(24): 22407-22419, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38037736

RESUMEN

BACKGROUND: Helicobacter pylori is a gastric pathogen that is responsible for causing chronic inflammation and increasing the risk of gastric cancer development. It is capable of persisting for decades in the harsh gastric environment because of the inability of the host to eradicate the infection. Several treatment strategies have been developed against this bacterium using different antibiotics. But the effectiveness of treating H. pylori has significantly decreased due to widespread antibiotic resistance, including an increased risk of gastric cancer. The small interfering RNAs (siRNA), which is capable of sequence-specific gene-silencing can be used as a new therapeutic approach for the treatment of a variety of such malignancies. In the current study, we rationally designed two siRNA molecules to silence the cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA) genes of H. pylori for their significant involvement in developing cancer. METHODS: We selected a common region of all the available transcripts from different countries of CagA and VacA to design the siRNA molecules. The final siRNA candidate was selected based on the results from machine learning algorithms, off-target similarity, and various thermodynamic properties. RESULT: Further, we utilized molecular docking and all atom molecular dynamics (MD) simulations to assess the binding interactions of the designed siRNAs with the major components of the RNA-induced silencing complex (RISC) and results revealed the ability of the designed siRNAs to interact with the proteins of RISC complex in comparable to those of the experimentally reported siRNAs. CONCLUSION: These designed siRNAs should effectively silence the CagA and VacA genes of H. pylori during siRNA mediated treatment in gastric cancer.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Helicobacter pylori/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , ARN Interferente Pequeño/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Neoplasias Gástricas/microbiología , Simulación del Acoplamiento Molecular , Citotoxinas/metabolismo , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/microbiología
5.
J Vet Med Sci ; 85(12): 1348-1354, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-37952974

RESUMEN

Helicobacter pylori is a well-known pathogen that causes chronic gastritis, leading to the development of gastric cancer. This bacterium has also been detected in dogs, and symptoms similar to those in humans have been reported. The cytotoxin-associated gene A (CagA) is involved in pathogenesis through aberrant activation of host signal transduction, including the nuclear factor-kappa B (NF-κB) pathway. We have previously shown the anti-inflammatory effect of the G-protein-coupled estrogen receptor (GPER) via inhibiting of NF-κB activation in several cells. Therefore, here, we investigated the effect of GPER on CagA-mediated NF-κB promoter activity and showed that CagA overexpression in gastric cancer cells activated the NF-κB reporter and induced interleukin 8 (il-8) expression, both of which were inhibited by the GPER agonist.


Asunto(s)
Enfermedades de los Perros , Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animales , Perros , Humanos , Citotoxinas/metabolismo , Enfermedades de los Perros/metabolismo , Mucosa Gástrica/metabolismo , Proteínas de Unión al GTP/metabolismo , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/veterinaria , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Interleucina-8/genética , FN-kappa B/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/veterinaria
6.
Microb Pathog ; 185: 106382, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839759

RESUMEN

The increasing incidence of Streptococcus pneumoniae (S. pneumoniae) infection severely threatened the global public heath, causing a significant fatality in immunocompromised hosts. Notably, pneumolysin (PLY) as a pore-forming cytolysin plays a crucial role in the pathogenesis of pneumococcal pneumonia and lung injury. In this study, a natural flavonoid isorhamnetin was identified as a PLY inhibition to suppress PLY-induced hemolysis by engaging the predicted residues and attenuate cytolysin PLY-mediated A549 cells injury. Underlying mechanisms revealed that PLY inhibitor isorhamnetin further contributed to decrease the formation of bacterial biofilms without affecting the expression of PLY. In vivo S. pneumoniae infection confirmed that the pathological injury of lung tissue evoked by S. pneumoniae was ameliorated by isorhamnetin treatment. Collectively, these results presented that isorhamnetin could inhibit the biological activity of PLY, thus reducing the pathogenicity of S. pneumoniae. In summary, our study laid a foundation for the feasible anti-virulence strategy targeting PLY, and provided a promising PLY inhibitor for the treatment of S. pneumoniae infection.


Asunto(s)
Infecciones Neumocócicas , Humanos , Infecciones Neumocócicas/tratamiento farmacológico , Streptococcus pneumoniae/metabolismo , Estreptolisinas , Proteínas Bacterianas/metabolismo , Citotoxinas/metabolismo
7.
Biophys J ; 122(20): 4068-4081, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37740492

RESUMEN

Plasma membrane-induced protein folding and conformational transitions play a central role in cellular homeostasis. Several transmembrane proteins are folded in the complex lipid milieu to acquire a specific structure and function. Bacterial pore forming toxins (PFTs) are proteins expressed by a large class of pathogenic bacteria that exploit the plasma membrane environment to efficiently undergo secondary structure changes, oligomerize, and form transmembrane pores. Unregulated pore formation causes ion imbalance, leading to cell death and infection. Determining the free energy landscape of these membrane-driven-driven transitions remains a challenging problem. Although cholesterol recognition is required for lytic activity of several proteins in the PFT family of toxins, the regulatory role of cholesterol for the α-PFT, cytolysin A expressed by Escherichia coli remains unexplained. In a recent free energy computation, we showed that the ß tongue, a critical membrane-inserted motif of the ClyA toxin, has an on-pathway partially unfolded intermediate that refolds into the helix-turn-helix motif of the pore state. To understand the molecular role played by cholesterol, we carry out string-method-based computations in membranes devoid of cholesterol, which reveals an increase of ∼30 times in the free energy barrier for the loss of ß sheet secondary structure when compared with membranes containing cholesterol. Specifically, the tyrosine-cholesterol interaction was found to be critical to creating the unfolded intermediate. Cholesterol also increases the packing and hydrophobicity of the bilayer, resulting in enhanced interactions of the bound protein before complete membrane insertion. Our study illustrates that cholesterol is critical to catalyzing and stabilizing the membrane-inserted unfolded state of the ß tongue motif of ClyA, opening up fresh insights into cholesterol-assisted unfolding of membrane proteins.


Asunto(s)
Toxinas Bacterianas , Escherichia coli , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Porinas/metabolismo , Estructura Secundaria de Proteína , Citotoxinas/análisis , Citotoxinas/metabolismo , Citotoxinas/farmacología , Colesterol/metabolismo
8.
Cancer Rep (Hoboken) ; 6(11): e1878, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37530125

RESUMEN

Gut microbiota dictates the fate of several diseases, including cancer. Most gastric cancers (GC) belong to gastric adenocarcinomas (GAC). Helicobacter pylori colonizes the gastric epithelium and is the causative agent of 75% of all stomach malignancies globally. This bacterium has several virulence factors, including cytotoxin-associated gene A (CagA), vacuolating cytotoxin (VacA), and outer membrane proteins (OMPs), all of which have been linked to the development of gastric cancer. In addition, bacteria such as Escherichia coli, Streptococcus, Clostridium, Haemophilus, Veillonella, Staphylococcus, and Lactobacillus play an important role in the development of gastric cancer. Besides, lactic acid bacteria (LAB) such as Bifidobacterium, Lactobacillus, Lactococcus, and Streptococcus were found in greater abundance in GAC patients. To identify potential diagnostic and therapeutic interventions for GC, it is essential to understand the mechanistic role of H. pylori and other bacteria that contribute to gastric carcinogenesis. Furthermore, understanding bacteria-host interactions and bacteria-induced inflammatory pathways in the host is critical for developing treatment targets for gastric cancer.


Asunto(s)
Helicobacter pylori , Microbiota , Neoplasias Gástricas , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Neoplasias Gástricas/microbiología , Citotoxinas/metabolismo
9.
Infect Immun ; 91(7): e0003523, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37278645

RESUMEN

Group B Streptococcus (GBS) is a leading cause of infant sepsis worldwide. Colonization of the gastrointestinal tract is a critical precursor to late-onset disease in exposed newborns. Neonatal susceptibility to GBS intestinal translocation stems from intestinal immaturity; however, the mechanisms by which GBS exploits the immature host remain unclear. ß-hemolysin/cytolysin (ßH/C) is a highly conserved toxin produced by GBS capable of disrupting epithelial barriers. However, its role in the pathogenesis of late-onset GBS disease is unknown. Our aim was to determine the contribution of ßH/C to intestinal colonization and translocation to extraintestinal tissues. Using our established mouse model of late-onset GBS disease, we exposed animals to GBS COH-1 (WT), a ßH/C-deficient mutant (KO), or vehicle control (phosphate-buffered saline [PBS]) via gavage. Blood, spleen, brain, and intestines were harvested 4 days post-exposure for determination of bacterial burden and isolation of intestinal epithelial cells. RNA sequencing was used to examine the transcriptomes of host cells followed by gene ontology enrichment and KEGG pathway analysis. A separate cohort of animals was followed longitudinally to compare colonization kinetics and mortality between WT and KO groups. We demonstrate that dissemination to extraintestinal tissues occurred only in the WT exposed animals. We observed major transcriptomic changes in the colons of colonized animals, but not in the small intestines. We noted differential expression of genes that indicated the role of ßH/C in altering epithelial barrier structure and immune response signaling. Overall, our results demonstrate an important role of ßH/C in the pathogenesis of late-onset GBS disease.


Asunto(s)
Infecciones Estreptocócicas , Transcriptoma , Ratones , Animales , Streptococcus agalactiae/genética , Mucosa Intestinal/metabolismo , Intestinos/patología , Citotoxinas/metabolismo , Epitelio/patología , Infecciones Estreptocócicas/microbiología
10.
Expert Rev Mol Med ; 25: e23, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37309681

RESUMEN

Helicobacter pylori (H. pylori) is a worldwide spread bacterium, co-evolving with humans for at least 100 000 years. Despite the uncertainty about the mode of H. pylori transmission, the development of intra-gastric and extra-gastric diseases is attributed to this bacterium. The morphological transformation and production of heterogenic virulence factors enable H. pylori to overcome the harsh stomach environment. Using numerous potent disease-associated virulence factors makes H. pylori a prominent pathogenic bacterium. These bacterial determinants are adhesins (e.g., blood group antigen-binding adhesin (BabA)/sialic acid-binding adhesin (SabA)), enzymes (e.g., urease), toxins (e.g., vacuolating cytotoxin A (VacA)), and effector proteins (e.g., cytotoxin-associated gene A (CagA)) involved in colonisation, immune evasion, and disease induction. H. pylori not only cleverly evades the immune system but also robustly induces immune responses. This insidious bacterium employs various strategies to evade human innate and adaptive immune responses, leading to a life-long infection. Owing to the alteration of surface molecules, innate immune receptors couldn't recognise this bacterium; moreover, modulation of effector T cells subverts adaptive immune response. Most of the infected humans are asymptomatic and only a few of them present severe clinical outcomes. Therefore, the identification of virulence factors will pave the way for the prediction of infection severity and the development of an effective vaccine. H. pylori virulence factors are hereby comprehensively reviewed and the bacterium evasion from the immune response is properly discussed.


Asunto(s)
Helicobacter pylori , Humanos , Factores de Virulencia/genética , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Sistema Inmunológico , Citotoxinas/metabolismo
11.
Microb Pathog ; 181: 106200, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37315629

RESUMEN

The membrane-damaging RTX family cytotoxin RtxA is a key virulence factor of the emerging pediatric pathogen Kingella kingae, but little is known about the mechanism of RtxA binding to host cells. While we have previously shown that RtxA binds cell surface glycoproteins, here we demonstrate that the toxin also binds different types of gangliosides. The recognition of gangliosides by RtxA depended on sialic acid side groups of ganglioside glycans. Moreover, binding of RtxA to epithelial cells was significantly decreased in the presence of free sialylated gangliosides, which inhibited cytotoxic activity of the toxin. These results suggest that RtxA utilizes sialylated gangliosides as ubiquitous cell membrane receptor molecules on host cells to exert its cytotoxic action and support K. kingae infection.


Asunto(s)
Toxinas Bacterianas , Kingella kingae , Humanos , Niño , Kingella kingae/metabolismo , Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Factores de Virulencia/metabolismo , Citotoxinas/metabolismo
12.
Biochem Pharmacol ; 213: 115608, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37201874

RESUMEN

Lagunamide D, a cyanobacterial cyclodepsipeptide, exhibits potent antiproliferative activity against HCT116 colorectal cancer cells (IC50 5.1 nM), which were used to probe the mechanism of action. Measurements of metabolic activity, mitochondrial membrane potential, caspase 3/7 activity and cell viability indicate the rapid action of lagunamide D on mitochondrial function and downstream cytotoxic effects in HCT116 cells. Lagunamide D preferentially targets the G1 cell cycle population and arrests cells in G2/M phase at high concentration (32 nM). Transcriptomics and subsequent Ingenuity Pathway Analysis identified networks related to mitochondrial functions. Lagunamide D induced mitochondrial network redistribution at 10 nM, suggesting a mechanism shared with the structurally related aurilide family, previously reported to target mitochondrial prohibitin 1 (PHB1). Knockdown and chemical inhibition of ATP1A1 sensitized the cells to lagunamide D, as also known for aurilide B. We interrogated potential mechanisms behind this synergistic effect between lagunamide D and ATP1A1 knockdown by using pharmacological inhibitors and extended the functional analysis to a global level by performing a chemogenomic screen with a siRNA library targeting the human druggable genome, revealing targets that modulate susceptibility to lagunamide D. In addition to mitochondrial targets, the screen revealed hits involved in the ubiquitin/proteasome pathway, suggesting lagunamide D might exert its effects by additionally affecting proteostasis. Our analysis illuminated cellular processes of lagunamide D that can be modulated in parallel to mitochondrial functions. The identification of potential synergistic drug combinations that can alleviate undesirable toxicity may open possibilities to resurrect this class of compounds for anticancer therapy.


Asunto(s)
Antineoplásicos , Cianobacterias , Humanos , Línea Celular Tumoral , Citotoxinas/metabolismo , Antineoplásicos/química , Mitocondrias/metabolismo , Cianobacterias/química , Genómica , Apoptosis
13.
Brain Res ; 1807: 148315, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36878343

RESUMEN

Microglia are the resident immune cells of the brain which regulate both the innate and adaptive neuroimmune responses in health and disease. In response to specific endogenous and exogenous stimuli, microglia transition to one of their reactive states characterized by altered morphology and function, including their secretory profile. A component of the microglial secretome is cytotoxic molecules capable of causing damage and death to nearby host cells, thus contributing to the pathogenesis of neurodegenerative disorders. Indirect evidence from secretome studies and measurements of mRNA expression using diverse microglial cell types suggest different stimuli may induce microglia to secrete distinct subsets of cytotoxins. We demonstrate the accuracy of this hypothesis directly by challenging murine BV-2 microglia-like cells with eight different immune stimuli and assessing secretion of four potentially cytotoxic molecules, including nitric oxide (NO), tumor necrosis factor α (TNF), C-X-C motif chemokine ligand 10 (CXCL10), and glutamate. Lipopolysaccharide (LPS) and a combination of interferon (IFN)-γ plus LPS induced secretion of all toxins studied. IFN-ß, IFN-γ, polyinosinic:polycytidylic acid (poly I:C), and zymosan A upregulated secretion of subsets of these four cytotoxins. LPS and IFN-γ, alone or in combination, as well as IFN-ß induced toxicity of BV-2 cells towards murine NSC-34 neuronal cells, while ATP, N-formylmethionine-leucyl-phenylalanine (fMLP), and phorbol 12-myristate 13-acetate (PMA) did not affect any parameters studied. Our observations contribute to a growing body of knowledge on the regulation of the microglial secretome, which may inform future development of novel therapeutics for neurodegenerative diseases, where dysregulated microglia are key contributors to pathogenesis.


Asunto(s)
Microglía , Neurotoxinas , Ratones , Animales , Microglía/metabolismo , Neurotoxinas/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Interferón gamma/farmacología , Interferón gamma/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Citotoxinas/metabolismo , Citotoxinas/farmacología
14.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36982467

RESUMEN

Helicobacter pylori (H. pylori) has been associated with cardiovascular diseases. The pro-inflammatory H. pylori virulence factor cytotoxin-associated gene A (CagA) has been detected in serum exosomes of H. pylori-infected subjects and may exert systemic effects throughout the cardiovascular system. The role of H. pylori and CagA in vascular calcification was hitherto unknown. The aim of this study was to determine the vascular effects of CagA through human coronary artery smooth muscle cell (CASMC) osteogenic and pro-inflammatory effector gene expression as well as interleukin 1ß secretion and cellular calcification. CagA upregulated bone morphogenic protein 2 (BMP-2) associated with an osteogenic CASMC phenotype switch and induced increased cellular calcification. Furthermore, a pro-inflammatory response was observed. These results support that H. pylori may contribute to vascular calcification through CagA rendering CASMCs osteogenic and inducing calcification.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Calcificación Vascular , Humanos , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vasos Coronarios/metabolismo , Citotoxinas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/complicaciones , Infecciones por Helicobacter/complicaciones
15.
ACS Appl Bio Mater ; 6(9): 3387-3394, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-36972339

RESUMEN

Intracellular bacteria are able to survive and grow in host cells and often cause serious infectious diseases. The B subunit of the subtilase cytotoxin (SubB) found in enterohemorrhagic Escherichia coli O113:H21 recognizes sialoglycans on cell surfaces and triggers the uptake of cytotoxin by the cells, meaning that Sub B is a ligand molecule that is expected to be useful for drug delivery into cells. In this study, we conjugated SubB to silver nanoplates (AgNPLs) for use as an antibacterial drug and examined their antimicrobial activity against intracellularly infecting Salmonella typhimurium (S. typhimurium). The modification of AgNPLs with SubB improved their dispersion stability and antibacterial activity against planktonic S. typhimurium. The SubB modification enhanced the cellular uptake of AgNPLs, and intracellularly infecting S. typhimurium were killed at low concentrations of AgNPLs. Interestingly, larger amounts of SubB-modified AgNPLs were taken up by infected cells compared with uninfected cells. These results suggest that the S. typhimurium infection activated the uptake of the nanoparticles into the cells. SubB-modified AgNPLs are expected to be useful bactericidal systems for intracellularly infecting bacteria.


Asunto(s)
Antiinfecciosos , Toxinas Bacterianas , Plata/farmacología , Plata/química , Escherichia coli/metabolismo , Toxinas Bacterianas/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Citotoxinas/química , Citotoxinas/metabolismo , Antiinfecciosos/metabolismo
16.
Nutrients ; 15(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36771230

RESUMEN

Breast cancer (BC) is the most widespread tumor in women and the second type of most common cancer worldwide. Despite all the technical and medical advances in existing therapies, between 30 and 50% of patients with BC will develop metastasis, which contributes to the failure of existing treatments. This situation urges the need to find more effective prevention and treatment strategies like the use of plant-based nutraceutical compounds. In this context, we purified three Narrow Leafed Lupin (NLL) ß-conglutins isoforms using affinity-chromatography and evaluated their effectiveness in terms of viability, proliferation, apoptosis, stemness properties, and mechanism of action on both BC cell lines and a healthy one. NLL ß-conglutins proteins have very promising effects at the molecular level on BC cells at very low concentrations, emerging as a potential natural cytotoxic agent and preserving the viability of healthy cells. These proteins could act through a dual mechanism involving tumorigenic and stemness-related genes such as SIRT1 and FoxO1, depending on the state of p53. More studies must be carried out to completely understand the underlying mechanisms of action of these nutraceutical compounds in BC in vitro and in vivo, and their potential use for the inhibition of other cancer cell types.


Asunto(s)
Neoplasias de la Mama , Lupinus , Humanos , Femenino , Lupinus/química , Citotoxinas/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Proteínas de Almacenamiento de Semillas , Semillas/química
17.
J Lipid Res ; 64(4): 100344, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36791915

RESUMEN

Almost all the cholesterol in cellular membranes is associated with phospholipids in simple stoichiometric complexes. This limits the binding of sterol ligands such as filipin and perfringolysin O (PFO) to a small fraction of the total. We offer a simple mathematical model that characterizes this complexity. It posits that the cholesterol accessible to ligands has two forms: active cholesterol, which is that not complexed with phospholipids; and extractable cholesterol, that which ligands can capture competitively from the phospholipid complexes. Simulations based on the model match published data for the association of PFO oligomers with liposomes, plasma membranes, and the isolated endoplasmic reticulum. The model shows how the binding of a probe greatly underestimates cholesterol abundance when its affinity for the sterol is so weak that it competes poorly with the membrane phospholipids. Two examples are the understaining of plasma membranes by filipin and the failure of domain D4 of PFO to label their cytoplasmic leaflets. Conversely, the exaggerated staining of endolysosomes suggests that their cholesterol, being uncomplexed, is readily available. The model is also applicable to the association of cholesterol with intrinsic membrane proteins. For example, it supports the hypothesis that the sharp threshold in the regulation of homeostatic endoplasmic reticulum proteins by cholesterol derives from the cooperativity of their binding to the sterol weakly held by the phospholipids. Thus, the model explicates the complexity inherent in the binding of ligands like PFO and filipin to the small accessible fraction of membrane cholesterol.


Asunto(s)
Colesterol , Esteroles , Filipina , Colesterol/metabolismo , Membrana Celular/metabolismo , Esteroles/metabolismo , Fosfolípidos/metabolismo , Citotoxinas/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo
18.
Toxins (Basel) ; 14(12)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36548736

RESUMEN

Cytotoxins (CTXs), an essential class of the non-enzymatic three-finger toxin family, are ubiquitously present in cobra venoms. These low-molecular-mass toxins, contributing to about 40 to 60% of the cobra venom proteome, play a significant role in cobra venom-induced toxicity, more prominently in dermonecrosis. Structurally, CTXs contain the conserved three-finger hydrophobic loops; however, they also exhibit a certain degree of structural diversity that dictates their biological activities. In their mechanism, CTXs mediate toxicity by affecting cell membrane structures and membrane-bound proteins and activating apoptotic and necrotic cell death pathways. Notably, some CTXs are also responsible for depolarizing neurons and heart muscle membranes, thereby contributing to the cardiac failure frequently observed in cobra-envenomed victims. Consequently, they are also known as cardiotoxins (CdTx). Studies have shown that cobra venom CTXs form cognate complexes with other components that potentiate the toxic effects of the venom's individual component. This review focuses on the pharmacological mechanism of cobra venom CTXs and their complexes, highlighting their significance in cobra venom-induced pathophysiology and toxicity. Furthermore, the potency of commercial antivenoms in reversing the adverse effects of cobra venom CTXs and their complexes in envenomed victims has also been discussed.


Asunto(s)
Venenos Elapídicos , Toxinas Biológicas , Animales , Venenos Elapídicos/química , Antivenenos/uso terapéutico , Citotoxinas/metabolismo , Elapidae/metabolismo , Toxinas Biológicas/metabolismo
19.
Toxins (Basel) ; 14(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36287918

RESUMEN

Careya arborea, Punica granatum, Psidium guajava, Holarrhena antidysenterica, Aegle marmelos, and Piper longum are commonly used traditional medicines against diarrhoeal diseases in India. This study investigated the inhibitory activity of these plants against cytotoxicity and enterotoxicity induced by toxins secreted by Vibrio cholerae. Cholera toxin (CT) and non-membrane damaging cytotoxin (NMDCY) in cell free culture filtrate (CFCF) of V. cholerae were quantified using GM1 ELISA and cell-based assays, respectively. Hydro-alcoholic extracts of these plants and lyophilized juice of P. granatum were tested against CT-induced elevation of cAMP levels in CHO cell line, binding of CT to ganglioside GM1 receptor and NMDCY-induced cytotoxicity. Significant reduction of cAMP levels in CFCF treated CHO cell line was observed for all extracts except P. longum. C. arborea, P. granatum, H. antidysenterica and A. marmelos showed >50% binding inhibition of CT to GM1 receptor. C. arborea, P. granatum, and P. guajava effectively decreased cytotoxicity and morphological alterations caused by NMDCY in CHO cell line. Further, the efficacy of these three plants against CFCF-induced enterotoxicity was seen in adult mice ligated-ileal loop model as evidenced by decrease in volume of fluid accumulation, cAMP levels in ligated-ileal tissues, and histopathological changes in intestinal mucosa. Therefore, these plants can be further validated for their clinical use against cholera.


Asunto(s)
Cólera , Plantas Medicinales , Toxinas Biológicas , Vibrio cholerae , Cricetinae , Ratones , Animales , Cólera/tratamiento farmacológico , Toxina del Cólera/toxicidad , Gangliósido G(M1)/farmacología , Gangliósido G(M1)/metabolismo , Vibrio cholerae/metabolismo , Toxinas Biológicas/metabolismo , Citotoxinas/metabolismo , Células CHO
20.
J Cell Biol ; 221(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36194176

RESUMEN

Pore-forming toxins (PFTs) are important virulence factors produced by many pathogenic bacteria. Here, we show that the Vibrio cholerae toxin MakA is a novel cholesterol-binding PFT that induces non-canonical autophagy in a pH-dependent manner. MakA specifically binds to cholesterol on the membrane at pH < 7. Cholesterol-binding leads to oligomerization of MakA on the membrane and pore formation at pH 5.5. Unlike other cholesterol-dependent cytolysins (CDCs) which bind cholesterol through a conserved cholesterol-binding motif (Thr-Leu pair), MakA contains an Ile-Ile pair that is essential for MakA-cholesterol interaction. Following internalization, endosomal acidification triggers MakA pore-assembly followed by ESCRT-mediated membrane repair and V-ATPase-dependent unconventional LC3 lipidation on the damaged endolysosomal membranes. These findings characterize a new cholesterol-binding toxin that forms pores in a pH-dependent manner and reveals the molecular mechanism of host autophagy manipulation.


Asunto(s)
Autofagia , Proteínas Bacterianas , Colesterol , Citotoxinas , Vibrio cholerae , Factores de Virulencia , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Autofagia/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Colesterol/metabolismo , Citotoxinas/metabolismo , Citotoxinas/farmacología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/química , Endosomas/metabolismo , Concentración de Iones de Hidrógeno , Lisosomas/química , Lisosomas/metabolismo , Unión Proteica , Vibrio cholerae/química , Vibrio cholerae/metabolismo , Factores de Virulencia/química , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...